Assessment of greenhouse gas fluxes in northwestern agricultural region of Russia: measurements and modeling

Eugene BALASHOV, Natalya BUCHKINA, Elena RIZHIYA

Agrophysical Research Institute RAAS, 14 Grazhdansky Prospekt, St. Petersburg, 195220 Russia E-mail: Eugene_Balashov@yahoo.co.uk

INTRODUCTION

N_2O

Russian agriculture accounts 7,3% of the total greenhouse gas fluxes from all anthropogenic sources.

N₂O emissions are about 69% of the total emissions of greenhouse gases from the Russian agriculture (4th National Communication, Russia, 2006).

INTRODUCTION

Structure of agricultural lands in NW Russia

Federal service of state registration, cadastre and cartography, NW REGION OF RUSSIAN FEDERATION, 2008

OBJECTIVES

(1) to quantify the differences in N_2O concentrations in a profile of a loamy sand Spodosol differing in fertility

(2) to predict the N_2O and CO_2 fluxes from the loamy sand Spodosol differing in fertility

CROP ROTATIONS ON LOAMY SAND SPODOSOL AT THE MENKOVO EXPERIMENTAL STATION (59°34'N, 30°08'E)

Potato Cabbage Carrot

Beetroot

2 Winter rye <u>Spring barley</u> Red clover Oat/legume mixture

SCHEME OF FIELD EXPERIMENT: each plot – 25 x 60 m

SOIL FERTILITY AND NITROGEN RATES (kg N ha⁻¹)

SOIL FERTILITY BEFORE APPLICATION OF FERTILIZERS		
	LOW	HIGH
<u>SOC, g C kg⁻¹ soil</u>	<u>23,0</u>	<u>25,0</u>
<u>MBC, mg C kg⁻¹ soil</u>	<u>325,7</u>	<u>553,5</u>
<u>pH</u> (H ₂ O)	<u>5,5</u>	<u>6,5</u>
NO ₃ ⁻ , mg N-NO ₃ ⁻ kg ⁻¹ soil	8,4	7,9
NH4 ⁺ , mg N-NH4 ⁺ kg ⁻¹ soil	9,3	7,8
FIELD CAPACITY, %	<u>21,2</u>	<u>26,8</u>

METHODS

Silicone tube method for collection of air samples for measurements of N_2O and CO_2 concentrations in soil profile (10-15, 25-30 and 45-50 cm)

METHODS

Closed chamber method for collection of air samples for measurements of direct N_2O and CO_2 emission from soils

PREDICTION OF N₂O AND CO₂ FLUXES FROM SOILS BY Process-based Denitrification-Decomposition (DNDC) model (Li et al., 1992): <u>www.dndc.sr.unh.edu</u>

RESULTS

DYNAMICS OF TOTAL AMOUNT OF PRECIPITATION FOR MAY – SEPTEMBER IN 1985-2010

RESULTS

DYNAMICS OF MEAN AIR TEMPERATURE FOR MAY – SEPTEMBER IN 1985-2010

DYNAMICS OF PRECIPITATION FROM 22 MAY (142) TO 7 AUGUST (219 Julian day), 2009

DYNAMICS OF N₂O CONCENTRATION (A) AND SOIL TEMPERATURE (B) AT THE DEPTH OF <u>10-15 CM</u>

DYNAMICS OF N₂O CONCENTRATION (A) AND SOIL TEMPERATURE (B) AT THE DEPTH OF <u>25-30 CM</u>

DYNAMICS OF N₂O CONCENTRATION (A) AND SOIL TEMPERATURE (B) AT THE DEPTH OF <u>45-50 CM</u>

DYNAMICS OF NO₃⁻ CONTENT AT THE 10-CM DEPTH (DNDC MODEL)

DYNAMICS OF TOTAL ECOSYSTEM RESPIRATION (A) AND N₂O EMISSION (B) FROM SOIL (DNDC MODEL) (A) (B)

DYNAMICS OF N_2 EMISSION (A) AND METABOLIC QUOTIENT - qCO_2 (B) ACCORDING TO DNDC MODEL (A) (B)

CONCLUSIONS:

- 1) The highest mean N₂O concentrations were observed at the depth of 10 to 15 cm of the poor and rich soil during the growing season for spring barley.
- 2) The mean N_2O concentrations were higher in the upper 50-cm layer of the rich soil than the poor soil.
- 3) The modeled N₂O fluxes, total ecosystem respiration and organic matter mineralization were greater in the poor soil than in the rich soil.

THANK YOU FOR YOUR ATTENTION FROM:

Dr. Natalya Buchkina Dr. Elena Rizhiya

and myself!

DYNAMICS OF ORGANIC MATTER MINERALIZATION ACCORDING TO THE DNDC MODEL

METHODS

DS1921G Thermochron iButtons for measurement of soil temperature

INTRODUCTION

Sources of N₂O emission from agriculture around the world

- Mineral fertisers
- Manures
- N fixed
- Crop residue
- Organic soils
- Pastures