COST-734

FROM WATER TO BIOETHANOL: THE IMPACT OF CLIMATE VARIABILITY ON THE WATER FOOTPRINT

Dalla Marta A., Mancini M., Natali F., Orlando F., Orlandini S.

Department of Plant, Soil and Environmental Science University of Florence

Department of Plant, Soil and Environmental Science DiPSA

Global anthropogenic GHG emissions

(a) Global annual emissions of anthropogenic GHGs from 1970 to 2004.⁵ (b) Share of different anthropogenic GHGs in total emissions in 2004 in terms of CO₂-eq. (c) Share of different sectors in total anthropogenic GHG emissions in 2004 in terms of CO₂-eq. (Forestry includes deforestation).

SUPPORT PROVIDED AT DIFFERENT POINTS IN THE BIOFUEL SUPPLY CHAIN

SUPPORT TO INPUTS

- Fertilizer, irrigation and other inputs support
- General energy and water-pricing policies
- Land-tenure policies

SUPPORT TO PRODUCTION

- Domestic agricultural subsidies
- Farm income support
- Trade policies
- General support to agriculture

PROCESSES AND MARKETING SUPPORT

- Production-linked payments
- Tax credits, incentives and exemptions
- Trade policies
- Subsidies for capital investments

SUPPORT TO CONSUMPTION

- Subsidies for purchase of biofuels
- Tax exemptions
- Subsidies for flex-fuel vehicle purchase

Source: FAO, 2008 adapted from Steenblink, 2007

ENVIRONMENTAL IMPACTS

SOIL

Reduction of soil organic matter Soil erosion and compaction Reduction of soil nutrients Losses of soil carbon

BIODIVERSITY

Expansion of crop production area: loss of habitat Large-scale mono-cropping: system vulnerability

ATMOSPHERE

Land-use change, production intensification on existing croplands, use of pesticides, fertilizers and machinery can have adverse impact on atmosphere through an increased emission of GHG such as CO_2 , CH_4 and N_2O

WATER

Many of the crops currently used for biofuel production (sugar cane, oil palm and maize) have high water requirements at commercial yield levels. The processing of feedstock into biofuels can use large quantities of water Biofuels production will affect also water quality due to soil erosion, sedimentation and nutrient runoff into surface waters and infiltration into groundwater from increased fertilizer applications

Source: FAO, 2008

CASE STUDY

Because the Regional Energetic Plan (PIER) of Tuscany indicates that for 2020 the production of energy from biofuels for transportation should reach 108 ktoe, (Kyoto Protocol) a careful investigation on the sustainability concerning the water-energy nexus is required, also considering the possible impacts of climate change and variability.

On these bases, the aims of this research are:

- a) To estimate the productivity of irrigated maize in Tuscany and its trend for the last 55 years
- b) To calculate the water footprint of bioethanol potentially produced
- c) To analyze the impact of climate change on the use of water for bioethanol production from maize

MATERIALS AND METHODS

SOFTWARE DSSAT – Ceres - Maize

CLIMATIC DATA

TEMPERATURE and *RAINFALL* from a historical series of homogenized daily data, from 1955 to 2009, coming from 10 weather stations *SOLAR GLOBAL RADIATION* calculated by means of ETo Calculator (FAO)

SOIL DATA

The soil was 1.50 m deep with a standard texture (sand 42%, clay 22%, silt 36%) Organic carbon 0.8% Total nitrogen 0.08%

IRRIGATION When AWC < 35%

NITROGEN FERTILIZATION

90 kg/ha at sowing 90 kg/ha at beginning of stem elongation

THE WATER FOOTPRINT OF MAIZE

The water footprint of bioethanol, defined as the ratio of the total volume of water used (m³/ha) to the quantity of the production (ton/year) (Hoekstra et al., 2011).

The WF of an agricultural product is the volume of water used during the crop growing period for producing a unit of product, and it has three components:

- **GREEN:** the ratio of effective rainfall (R_{eff}) to the crop yield
- **BLUE:** the ratio of effective irrigation (R_{eff}) to the crop yield

• **GRAY:** volume of water that is required to dilute pollutants to restore the quality standards of water. In this study, the water pollution was associated to the leaching of nitrogen (N_{lea}) caused by the use of inorganic fertilizers and the dilution factor (DF) used was 10 mg/l

 $WF_{maize} = WF_{g} + WF_{b} + WF_{gray}$

THE WATER FOOTPRINT OF ETHANOL

The WF of bioethanol was finally obtained considering:

a) An yield coefficient of 30%

b) A volume of water of 15 m³/t (computed as blue water) for processing maize

The WF was then expressed as liters of water needed per MJ of energy obtained, in order to better highlight the water-energy nexus.

We fully allocated the WF of the crop to the biofuels derived, assuming that the value of the residues of production is much lower than the value of the biofuel.

TREND OF MAIZE PRODUCTIVITY

YIELD				
Site	R ²	slope	sig	
Are	0.681	-36.95	5***	
Cdp	0.394	-24.15	5***	
Cng	0.402	-17.34	1***	
Gro	0.592	-13.55	5***	
Liv	0.843	-12.06	6***	
Mama	0.406	-14.82	2***	
Per	0.556	-14.68	3***	
Pis	0.762	-19.62	2***	
Sie	0.421	-4.76	S***	
Volt	0.500	-13.82	2***	

Yield reduction over the last 55 years

This effect is mainly due to temperature through its role in determining the duration of phenological phases.

FLOWERING-FILLING

FILLING DURATION

WF TRENDS

	GREE	N			BLUI	E				GRA	GRAY	GRAY
Site	R2	slope sig		Site	R2	slope sig			Site	Site R2	Site R2 slope	Site R2 slope
Are	0.32	0.16***		Are	0.08	0.06			Are	Are 0.65	Are 0.65 -0.2	Are 0.65 -0.21
Cdp	0.85	-0.42***		Cdp	0.73	0.24 ***			Cdp	Cdp 0.63	Cdp 0.63 -0.6	Cdp 0.63 -0.65
Cng	0.70	-0.58***		Cng	0.66	0.15 ***			Cng	Cng 0.56	Cng 0.56 -0.9	Cng 0.56 -0.90
Gro	0.21	-0.17**		Gro	0.38	0.10***			Gro	Gro 0.02	Gro 0.02 -0.0	Gro 0.02 -0.04
_iv	0.36	-0.22***		Liv	0.03	0.02			Liv	Liv 0.53	Liv 0.53 -0.3	Liv 0.53 -0.34
vlama	0.41	-0.28***		Mama	0.62	0.11 ***			Mama	Mama 0.09	Mama 0.09 -0.2	Mama 0.09 -0.25
Per	0.15	-0.18**		Per	0.67	0.15***			Per	Per 0.36	Per 0.36 -0.5	Per 0.36 -0.50
Pis	0.30	-0.20***		Pis	0.20	0.09**			Pis	Pis 0.42	Pis 0.42 -0.3	Pis 0.42 -0.38
Sie	0.01	0.03		Sie	0.11	0.03*			Sie	Sie 0.02	Sie 0.02 0.0	Sie 0.02 0.04
√olt	0.28	-0.20***		Volt	0.22	0.06 **			Volt	Volt 0.26	Volt 0.26 -0.2	Volt 0.26 -0.29
		y = -0	0.2049x + 67.52 R ² = 0.4733 092x + 28.583	4	J	T	y =	-0.3498x + 27.96 R ² = 0.4607	-0.3498x + 27.969 R ² = 0.4607	-0.3498x + 27.969 R ² = 0.4607	-0.3498x + 27.969 R ² = 0.4607	-0.3498x + 27.969 R ² = 0.4607
٣		2006 -	2004	1998	1990 -	1992 1990 1988	1986	1984 1980 1978	1984 1982 1980 1978 1976 1976	1984 1982 1978 1978 1976 1972 1972 1960	1984 1982 1978 1978 1972 1972 1960 1961	1984 1982 1980 1976 1976 1972 1970 1960

CHANGE OF WF FROM 1955 TO 2009

WF VARIABILITY

THE BIOETHANOL WF

	GREEN	BLUE	GRAY	TOTAL			
	WF	WF	WF	WF			
	L of water per MJ						
Are	52	29	8	89			
Cdp	63	28	21	111			
Cng	86	26	73	185			
Gro	46	40	3	88			
Liv	61	33	10	104			
Mama	62	33	19	114			
Per	65	30	20	115			
Pis	59	32	16	107			
Sie	61	31	8	99			
Volt	71	29	19	119			

	GREEN	BLUE	GRAY	TOTAL
	WF	WF	WF	WF
	L of v	vater pe	r L of eth	anol
Are	1086	618	161	1865
Cdp	1319	580	433	2333
Cng	1801	549	1530	3880
Gro	959	833	60	1853
Liv	1285	697	208	2190
Mama 🛛	1306	686	399	2391
Per	1372	620	423	2415
Pis	1231	680	346	2257
Sie	1274	654	160	2088
Volt	1486	610	409	2505

IN AN ENERGY-WATER NEXUS CONTEXT...

Primary energy carr	Global average water footprint (I/MJ)	
	Natural g <mark>as</mark>	0.11
Neg regeweble	Coal	0.16
Non-renewable	Crude oil	1.06
	Uranium	0.09
	Wind energy	0.00
	Solar thermal energy	0.27
Kenewable	Hydropower	22

Source: www.waterfootprint.org

BIOETHANOL FROM MAIZE RANGE: 72 - 175

IN A WATER CONTEXT...

IN TUSCANY

The irrigated area is 32 000 Ha The agriculture need of water is

150 million of m³

IN SET-ASIDE LANDS (50 000 HA) THE WATER NEED WOULD BE

326 million of m³

FOR CULTIVATION OF MAIZE FOR ENERGY PRODUCTION

180 million GREEN

90 million BLUE

56 million GRAY

IN AN ENERGY CONTEXT...

CONCLUSIONS

Climate change and variability indirectly affect the production of bioenergy through the impacts on crop development and production

An particular the ratio between green and blue WF is changing especially in relation to the change of rainfalls

A substantial increase in water pollution by fertilizers and pesticides is also a risk

>Particular attention has to be addressed to agricultural residues from permanent crops (vines, olives, etc.) or from forestry

Take into consideration that, in general, just a small part of rainfall water (about 10%) is actually used, so there is a need to sustain water storage practices (i.e. small ponds where possible)