

W. Smith, B. Grant, R.Desjardins, B. Qian and R. Kroebel

Eastern Cereal and Oilseed Research Centre Agriculture and Agri-Food Canada

Overview

- 1. Historical trends in climate
- 2. Development and parameterization of DNDC_Canada model
- 3. Methods for simulating the effects of agricultural management on yield and GHG emissions under a variable climate
- 4. Projections of crop production in Canada
- 5. Projections of GHG emissions

Long-term trends (CHU)

Long-term trends (SF, FF, FFD)

Long-term trends (WD)

Historical trends in corn yield for Eastern Canada

Trends of increased yield are primarily attributed to

- Improved management (tillage, erosion control, pest control, drainage, and irrigation)
- Development of new crop varieties that need less crop heat units
- Climate change as growing season is getting longer with more available Crop Heat Units

Development of improved process-based models to better estimate crop biomass production and GHG emission intensities from agroecosystems

Testing, Verification, and improvement

Smith et al., 2008. Canadian J. Soil Science, 88(2):251-260
Desjardins et al., 2010. Agric. and For. Meteorol. 150 (6) 817-824
Kröbel et al., 2011. Accepted in Canadian J. Soil Science
Pattey et al., 2007. Agricultural and Forest Meteorology. 142(2-4):103-119

Effect of Climate Variability and Climate change on GHG

Smith et al., 2004. Nutr. Cyc. Agroeco. 68:37-45 Smith et al., 2009. Idojaras. 113(1-2):103-115

C and N models

GHG Mitigation Scenarios (BMP's)

Grant et al., 2004. Climatic change 65:315-332 Desjardins et al.2004 Climatic Change. 70:283-297

Tier III emission Factors $(N_2O, Soil C, CH_4 from Manure)$

Smith et al., 2010. Agr, Ecosys. and .Env.136 (3-4), 301-309

National Inventories

GHG Calculators

Developments of the DNDC_Canada model

- Developed new Canada specific crop growth submodel
 - modified empirical growth curve
 - dynamic biomass fractioning
 - o new routine for root growth and development
 - o dynamic plant C:N ratios
- Added an equation to limit evaporation based on residue cover
- Developed a routine to bury crop residue
- Included a function to improve effect of temperature stress on plant growth
- Included cold damage for over wintering crops
- Enabled non-linear increases in atmospheric CO₂ concentrations
- Added an auto-fertilization routine

DNDC biomass simulations

Estimated Grain Yields for fertilized wheat: Swift Current, SK (semi-arid)

Estimated grain yields for fertilized wheat Lethbridge, Alberta (Dark Brown Chernozem)

Modeling approach to simulate the effects of future climate projections on agricultural systems

Objective

- Simulate the effect that agricultural practices may have on crop yields, SOC and N₂O emissions under climate change
- Focus on projections at Research Stations where DNDC has been validated for predicting crop biomass
- **AAFC-WG**, a stochastic weather generator, was used to develop 100 years of historical and future weather data
 - The data was derived from simulations conducted by the coupled global climate model (CGCM3)
 - o Historical (1961-1990)
 - o SRES Climate scenarios A1b, A2, B1 (2040-2069)

The DNDC model was employed using site specific agricultural activity data to simulate trends in yield and GHG emissions under historical climate and climate change scenarios

Predicted average temperature at research sites

Predicted average precipitation at research sites

Predicted effect of spring wheat yield under A1b climate scenario for a semi-arid soil

Predicted effect of agricultural management on wheat yield under SRES climate scenarios at Lethbridge Research Station

Frequency Distribution of Winter Wheat Yield under SRES climate scenarios

Predicted effect of agricultural management on corn yield under SRES climate scenarios at Harrow Research Station

Predicted effect of agricultural management on SOC under SRES climate scenarios at Lethbridge Research Station

Predicted effect of agricultural management on SOC under SRES climate scenarios at Harrow Research Station

Predicted effect of agricultural management on N_2O emissions under SRES climate scenarios at Lethbridge Research Station

Predicted effect of agricultural management on N₂O emissions under SRES climate scenarios at Harrow Research Station

Summary

- Historical trends in temperature and precipitation across Canada are beneficial for agricultural production in most areas
- Climate models project a warmer future with more precipitation but sometimes a net water deficit
- The DNDC_Canada model is able to reasonably predict interannual variations in historical crop yields
- Crop biomass production is predicted to increase under climate scenarios
- Winter wheat should be a more viable crop to grow in the future
- Net GHG emissions are predicted to decline in western semi-arid and sub-humid soils but may increase in Eastern humid soils

Modeling approach: Simulations at each site

Historical climate 1961-1990

- Wheat or corn
- Wheat-wheat-fallow
- Winter wheat

Climate scenarios (A1b, A2 and B1) 2040-2069

- Wheat or corn
 - o With no CO₂ fertilization
 - o With CO₂ fertilization
 - o Increased length of growing season
 - o Alternative cultivar (requires more crop heat units)
- Wheat-wheat-fallow
- Winter wheat